
1

Procedure Placement Using Temporal Ordering Information

Nikolas Gloy†, Trevor Blackwell†, Michael D. Smith†, and Brad Calder‡

†Division of Engineering and Applied Sciences, Harvard University
‡Department of Computer Science and Engineering, University of California, San Diego

Abstract
Instruction cache performance is very important to
instruction fetch efficiency and overall processor perfor-
mance. The layout of an executable has a substantial effect
on the cache miss rate during execution. This means that
the performance of an executable can be improved signifi-
cantly by applying a code-placement algorithm that mini-
mizes instruction cache conflicts. We describe an
algorithm for procedure placement, one type of code-
placement algorithm, that significantly differs from previ-
ous approaches in the type of information used to drive the
placement algorithm. In particular, we gather temporal
ordering information that summarizes the interleaving of
procedures in a program trace. Our algorithm uses this
information along with cache configuration and procedure
size information to better estimate the conflict cost of a
potential procedure ordering. We compare the perfor-
mance of our algorithm with previously published proce-
dure-placement algorithms and show noticeable
improvements in the instruction cache behavior.

Keywords: code layout, profiling, conflict misses

1 Introduction
The linear ordering of procedures in a program’s text

segment fixes the addresses of each of these procedures
and this in turn determines the cache line(s) that each pro-
cedure will occupy in the instruction cache. In the case of
a direct-mapped cache, conflict misses result when the
execution of the program alternates between two or more
procedures whose addresses map to overlapping sets of
cache lines. Several compile-time code-placement tech-
niques have been developed that use heuristics and profile
information to reduce the number of conflict misses in the
instruction cache by a reordering of the program code
blocks [5,6,7,8,11]. Though these techniques successfully
remove a sizeable number of the conflict misses when
compared to the default code layout produced during the
typical compilation process, it is possible to do even better
if we gather improved profile information and consider the

specifics of the hardware configuration. To this end, we
propose a method for summarizing the important temporal
ordering information related to code placement, and we
show how to use this information in a machine-specific
manner that often further reduces the number of instruc-
tion cache conflict misses. In particular, we apply our new
techniques to the problem of procedure placement in
direct-mapped caches, where the compiler achieves an
optimized cache line address for each procedure by speci-
fying the ordering of the procedures and gaps between
procedures in an executable.

Code-placement techniques may reorganize an applica-
tion at one or more levels of granularity. Typically, a tech-
nique focuses on the placement of whole procedures or
individual basic blocks. We use the term code block to
refer to the unit of granularity to which a code-placement
technique applies. Though we focus on the placement of
variable-sized code blocks defined by procedure bound-
aries, our techniques for capturing temporal information
and using this information during placement apply to code
blocks of any granularity.

The default code layout produced by most compilers
places procedures in the order in which they were listed in
the source files and preserves the order of object files from
the linker command line. Therefore, it is left to chance
which code blocks will conflict in the cache. Whenever
execution alternates between code blocks that overlap in
the cache, the number of conflict misses experienced dur-
ing this execution grows by the amount of dynamic inter-
leaving between the blocks. Furthermore, several studies
have shown that, when a compile-time optimization
changes the relative placement of code blocks, large
changes can occur in the instruction cache miss rate [3,4].
This means that the performance of the program is
affected not only by the intended effect of the optimiza-
tion, but also by the resulting change in instruction cache
miss rate. This makes it difficult to predict the final effect
of the optimization on performance. In summary, code-
placement techniques are important because they both
reduce the instruction cache miss rate and enable the effec-
tive application of some important compile-time optimiza-
tions [4].

Copyright 1997 IEEE. Published in the Proceedings of Micro-30, December 1-3, 1997 in Research Triangle Park, North Carolina. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone:
+ Intl. 908-562-3966.

2

To reduce the instruction cache miss rate of an applica-
tion, a code placement algorithm requires two capabilities:
it must be able to assign code blocks to the cache lines;
and it must have information on the relative importance of
avoiding overlap between different sets of code blocks.
There are only a few ways for the compiler to set the
addresses of a code block. The compiler can manipulate
the order in which code blocks appear in the executable,
and it can leave gaps between two adjacent code blocks to
force the alignment of the next code block at a specific
cache line. The more interesting problem is determining
how code blocks should overlap in the instruction cache.

The previous work on procedure placement has almost
exclusively been based on summary profile statistics that
simply indicate how often a code block was executed.
Often this information is organized into a weighted proce-
dure call graph (WCG) that records the number of calls
that occurred between pairs of procedures during a profil-
ing run of the program. Figure 1 contains an example of a
WCG. This summary information is used to estimate the
penalty resulting from the placement of these procedure
pairs in the same cache locations. The aim of most exist-
ing algorithms is to place procedures such that pairs with
high call counts do not conflict in the cache.

Counting the number of calls between procedures and
summarizing this information in a WCG provides a way
of recognizing procedures that are temporally related dur-
ing the execution of a program. However, a WCG does not
give us all the temporal information that we would like to
have. In particular, the absence of an edge between two
procedures does not necessarily mean that there is no pen-
alty to overlapping the procedures. For example, the WCG
in Figure 1 is produced both when the condition cond
alternates between true and false (Trace #1 in Figure 1)
and when the condition cond is true 40 times and then
false 40 times (Trace #2). Assume for the purposes of this
example that all procedures in Figure 1 require only a sin-
gle cache line and that we have only three locations in our
direct-mapped instruction cache. If one cache location is
reserved for procedure M, we do not want the same code
layout for the last two cache locations in both these execu-
tion traces. Trace #1 experiences fewer cache conflict
misses when procedures X and Y are each given distinct
cache line (Z shares a cache line with X or Y), while Trace
#2 experiences fewer cache conflict misses when proce-
dures X and Y share a cache line (Z is given its own cache
line). The WCG in Figure 1 does not capture the temporal
ordering information that is needed to determine which
layout is best. A WCG summarizes only direct call infor-
mation; no precise information is provided on the impor-
tance of conflicts between siblings (as illustrated in
Figure 1) or on more distant temporal relationships.

To enable better code layout, we want a measure of
how much the execution of a program alternates between
pairs of procedures (not just the pairs connected by an
edge in the WCG). We refer to this measure as temporal
ordering information. With this and other information
concerning procedure sizes and the target cache configu-
ration, we can make a better estimate of the number of
conflict misses experienced by any specific layout.

We begin in Section 2 with a brief description of a
well-known procedure-placement algorithm that sets a
framework for understanding our new algorithm. We
present the details of our algorithm in Sections 3 and 4.
Section 3 describes our method for extracting and summa-
rizing the temporal ordering information in a program
trace, while Section 4 presents our procedure-placement
algorithm that uses the information produced by this
method. In Section 5, we explain our experimental meth-
odology and present some empirical results that demon-
strate the benefit of our algorithm over previous
algorithms for direct-mapped caches. Section 6 describes
how to modify our algorithm for set-associative caches.
Finally, Section 7 reviews other related work in code lay-
out and Section 8 concludes.

2 Procedure placement in Pettis & Hansen
Current approaches to procedure placement rely on

greedy algorithms. We can summarize the differences
between these algorithms by describing how each:

• selects the order in which procedures are considered
for placement; and

Proc M()
loop 20-times

loop 4-times
if (cond)
call X;

else
call Y;

endl
call Z;

endl
endp

M((XYXY)Z)20

M((X)4Z)10((Y)4Z)10

Figure 1. Example of a program that calls three leaf
procedures. The weighted call graph (WCG) is
obtained when the condition cond is true 50% of the
time. Notice that this same WCG is obtained from
many different call traces.

(a) Example program (b) Weighted

(c) Possible call traces corresponding
to the WCG

Call Trace #1:
Call Trace #2:

40 40 20

Y

M

X Z

procedure call graph

3

• determines where to place each procedure relative to
the already-placed procedures.

We begin with a description of the well-known proce-
dure-placement algorithm by Pettis and Hansen [8]. As
we will explain, our new algorithm retains much of the
structure and many of the important heuristics found in
the Pettis and Hansen approach. In addition to procedure
placement, Pettis and Hansen also address the issues of
basic-block placement and branch alignment. For the pur-
poses of this paper, we use the acronym PH when refer-
ring to our implementation of the procedure placement
portion of their algorithm.

Pettis and Hansen reduce instruction-cache conflicts
between procedures by placing the most frequent caller/
callee procedure pairs at adjacent addresses. Their
approach is based on a WCG summary of the profile
information. They use this summary information both to
select the next procedure to place and to determine where
to place that procedure in relationship to the already-
placed procedures.

For our implementation of PH, we produce an undi-
rected graph with weighted edges, which contains essen-
tially the same information as a WCG. There is one node
in our graph for each procedure in the program. An edge
ep,q connects two nodes p and q if p calls q or q calls p.
The weight W(ep,q) given to ep,q is equal to the total num-
ber of control-flow transitions between procedure p and q
in the analyzed instruction trace. These transitions corre-
spond to call and return points, and they quantify the
amount of dynamic interleaving between the procedures.
Therefore, W(ep,q) in our graph is exactly twice the weight
of the edge ep,q in a typical WCG; each call is paired (typ-
ically) with a return. The extra factor of two does not
change the procedure placement produced by PH.

In PH, we use this graph to select both the next proce-
dure to place and determine the relative placement for this
procedure. The algorithm begins by making a copy of this
initial graph; we refer to this copy as the working graph.
PH searches this working graph for the edge with the larg-
est weight. Call this edge eu,v. Once this edge is found, the
algorithm merges the two nodes u and v into a single node
u' in the working graph (more details in a moment). The
remaining edges from the original nodes u and v to other
nodes become edges of the new node u'. To maintain the
invariant of a single edge between any pairs of nodes, PH
combines each pair of edges eu,r and ev,r into a single edge
eu',r with weight (W(eu,r) + W(ev,r)). The algorithm then
repeats the process, again searching for the edge with the
largest weight in the working graph, until all edges have
been removed from the working graph.

PH attempts to reduce the chance of a conflict miss
between procedures by placing procedures connected by a

heavy weight edge in close proximity in the address space.
The procedures within a node are organized as a linear list
called a chain [8]. When PH merges two nodes, their
chains can be combined into a single chain in four ways.
Let A and B represent the chains, and A’ and B’ the
reverse of each chain. The four possibilities are AB, AB’,
A’B and A’B’. To choose the best one of these, PH queries
the original graph to determine the edge e with the largest
weight between a procedure p in the first chain and a pro-
cedure q in the second chain. Our implementation of PH
chooses the merged chain that minimizes the distance (in
bytes) between p and q.

3 Summarizing temporal ordering informa-
tion

Any algorithm that aims to optimize the arrangement
of code blocks needs a conflict metric which quantifies the
importance of avoiding conflicts between sets of code
blocks. Ideally, the metric would report the number of
cache conflict misses caused by mapping a set of code
blocks to overlapping cache lines. We do not expect to
find a metric that gives the exact number of resulting
cache conflict misses, and we do not need one. We simply
need the metric to be a linear function of number of con-
flict misses.1 Section 5.3 shows that the metric used in our
algorithm exhibits strong correlation with the instruction
cache miss rate.

As discussed in the previous section, PH uses an edge
weight W(p,q) based on the dynamic count of calls and
returns between two procedures p and q as its conflict
metric. This simple metric drives the merging of nodes.
Unfortunately, this metric has several drawbacks, as illus-
trated in Section 1.

To understand how to build a better conflict metric, it is
helpful to review the actions of a cache when processing
an instruction stream. Assume for a moment that we are
tracking code blocks with a size equal to the size of a
cache line. For a direct-mapped cache, a code block b
maps to cache line l = (Addr(b) DIV line_size) MOD
cache_lines. This code block remains in the cache until
another code block maps to the same cache line. In terms
of code layout, it is important therefore to note which
other code blocks are referenced temporally nearby to a
reference to b. Ideally, none of the blocks referenced
between consecutive references to b map to the same
cache line as b. In this way, we get reuse of the initial
fetch of block b and do not experience a conflict miss dur-
ing the second reference to b.

1. Clearly, any difference between the training and testing data sets will
also affect the metric’s ability to predict cache conflict misses in the
testing run.

4

Since the reuse of a code block can be prevented by a
single other code block in direct-mapped caches, we con-
struct a data structure that summarizes, for each procedure
p and q, the frequency of finding q between two consecu-
tive references to p. It is convenient to build this data
structure as a weighted graph, where the nodes represent
individual code blocks. We refer to this graph as a tempo-
ral relationship graph (TRG). In PH, the conflict metric is
simply the edge weight ep,q between two nodes p and q in
the WCG. A TRG is more general than a WCG because it
can contain edges connecting any pair of code blocks for
which there is some interleaving during the program exe-
cution. Figure 2 presents the TRG resulting from the exe-
cution that produced trace #2 in Figure 1.

To summarize the temporal locality of the code blocks
in a trace (and to help build the corresponding TRG), we
maintain and analyze an ordered set, Q, of recently-refer-
enced code-block identifiers (e.g. procedure names). The
code blocks in Q are ordered as they appeared in the trace.
There is a bound on the maximum size of Q because its
entries eventually become irrelevant and can be removed.
There are two ways in which a code block identifier p can
become irrelevant. First, we need only the latest reference
to p in Q. Any code blocks that are executed after the most
recent reference to p can only have an effect on that refer-
ence and not on any earlier reference. Second, p can
become irrelevant if a sufficiently large amount of
(unique) code has been executed since p’s last reference
and evicted p from the cache. In some sense, this eviction
is due to the limited capacity of the cache and not because
of any timely interleaving. If T is the set of code block
identifiers reached since the last reference to p and S(T) is
the sum of the sizes of the code blocks referenced in T,
exactly how big S(T) needs to grow before p becomes
irrelevant for capacity concerns depends on the cache
mapping of the code. Assuming that the code layout max-
imizes the reuse of the members of T, they will be mapped
to mostly non-overlapping addresses, and their cache foot-
print will be nearly equal to S(T). Therefore, p becomes
irrelevant only after S(T) is greater than the cache size.
Empirically, we have found that a bound on Q of twice the
cache size works quite well.

A TRG is built from the information in Q. In particular,
we process the trace one code block identifier at a time. At
each processing step, we take the next identifier p from the
trace and place it at the most recent end of Q. We next
analyze Q to summarize the interleaving information
related to this latest reference to p. If there is a previous
reference to p in Q, we increment the weight on the edge
ep,q for each q between the two references to p. If node p
does not exist in the TRG, we create it; if the edge ep,q
does not exist, we create it with a weight of 1. If on the
other hand there is no previous reference to p in Q, we

make no modifications to the TRG during this processing
step. No modification is necessary since there is no previ-
ous reference to p that we could exploit for reuse reasons.
We then perform maintenance on Q: If there is a previous
occurrence of p in Q, remove it. If not, we remove the old-
est members of Q until the removal of the next least-
recently-used identifier would cause the total size (in
bytes) of remaining code blocks in Q to be less than twice
the cache size. The process then repeats until we have pro-
cessed the entire trace. Figure 3 illustrates the processing
of part of the trace that produced the TRG in Figure 2.
After processing, we are left with a TRG whose edge
weights W(ep,q) record the number of times p and q
occurred within a sufficiently small distance to be present
in Q at the same time, independent of how p and q are
related in the program’s call graph.

4 Our placement algorithm
Given the discussion in Sections 2 and 3, it should be

clear that we could use TRG constructed in Section 3
within the procedure-placement algorithm described by
Pettis and Hansen [8]. We have found however that extra
temporal ordering information alone is not sufficient to
guarantee lower instruction cache miss rates. To get con-
sistent improvements, we also make two key changes to
the way we determine where to place each procedure rela-
tive to the already-placed procedures. The first involves
the use of procedure size and cache configuration infor-
mation that allows us to make a more informed procedure-
placement decision. The second involves the gathering of
temporal ordering information at a granularity finer than
the procedure unit; we use this more detailed information
to overcome problems created by procedures that are

Figure 2. The TRG resulting from the execution trace
#2 given in Figure 1. TRG construction is based on the
ordering of calls and returns in this execution trace. All
of the edges from the WCG still remain, except that
their weights are nearly doubled. The weights are not
quite doubled since an edge is incremented only when
interleaving occurs, i.e. we see p then q then p again.
The extra two edges indicate that there is interleaving
in this trace between the procedure pairs (X,Z) and
(Y,Z), but not between (X,Y).

79 79 39

Y

M

X Z

18

19

M((X)4Z)10((Y)4Z)10

Original

M((XM)4ZM)10((YM)4ZM)10

Equivalent
call and return trace:

call trace #2:

5

larger than the cache size. For efficiency reasons, we also
consider only popular (i.e. frequently executed) proce-
dures during the building of a relationship graph, as was
proposed by Hashemi et al. [5].

The rest of this section outlines our procedure-place-
ment algorithm. Section 4.1 begins with a description of
the TRGs required for our algorithm and how we iterate
through the procedure list selecting the order in which
procedure are processed by the main outer loop.
Section 4.2 focuses on the portion of our algorithm’s main
loop that places a procedure relative to the procedures
already processed using cache configuration and proce-
dure size information. This placement decision simply
specifies a cache-relative alignment among a set of proce-
dures. The determination of each procedure’s starting
address (i.e. its placement in the linear address space)
occurs only after all popular procedures have been pro-

cessed. Section 4.3 presents the details of this process, and
Section 4.4 comments on the practicality of this approach.

4.1 TRGs and the main outer loop
Our algorithm uses two related TRGs. One selects the

next procedure to be placed (TRGselect); and other aids in
the determination of where to place this selected proce-
dure (TRGplace). In PH, these two graphs are initially the
same. In our algorithm, the graphs differ in the granularity
of the code blocks processed during TRG build. While a
code block in TRGselect corresponds to a whole procedure,
a code block in TRGplace corresponds to a statically-deter-
mined chunk of a procedure. In the next section, we dis-
cuss why chunking is important.

For our benchmarks, we have found that a chunk size
of 256 bytes works well. TRGplace thus contains

 nodes for each procedure p in
a program. It is straightforward to modify the algorithm in
the previous section to generate both TRGs simulta-
neously. Though we record temporal information concern-
ing parts of procedures, our procedure-placement
algorithm places only whole procedures. We use the finer-
grain information only to find the best relative alignment
of the whole procedures as explained below.

Though TRGselect contains more edges per node than
the relationship graph built in PH (due to the additional
temporal ordering information), we process TRGselect in
exactly the same greedy-merging manner as the relation-
ship graph discussed in Section 2. The only other differ-
ence in our “working” relationship graph is that TRGselect
contains only popular procedures.

4.2 Determining cache-relative alignments
In PH, the data structure for the nodes in the working

graph is a linear list (or a chain) of the procedures. The
building of a chain is more restrictive in terms of selecting
starting addresses for placed procedures than it needs to
be however. The only constraint that we need to maintain
is that the placed procedures are mapped to addresses that
result in a cache layout with a small conflict cost.

Instead of chains, we use a data structure for nodes in
TRGselect that comprises of a set of tuples. Each tuple con-
sists of a procedure identifier and an offset, in cache lines,
of the beginning of this procedure from the beginning of
the cache. For a node containing only a single procedure,
the offset is zero. When two nodes, each containing a sin-
gle procedure, are merged together, our algorithm modi-
fies the offset of the second procedure to ensure that the
cost metric of the placement of these two procedures in
the cache is minimized. The algorithm in Figure 4 pre-
sents the pseudo-code for the merging of two nodes con-
taining any number of already-placed procedures.

X M Z MQ:

Figure 3. The TRG build process using execution trace
#2 as an example. The processing of Q in (a) causes
the edge weight W(eM,X) to be incremented because X
occurs between M and its previous occurrence in Q.
The processing of Q in (b) does not add any new
edges to the TRG because there is no previous occur-
rence of Z. The node Z and the edge eM,Z are added
during the processing of Q in (c). The processing of Q
in (d) would increment eM,X and add eX,Z. The configu-
ration of Q assumes that the total size of X, M, and Z is
less than twice the size of the target instruction cache.

6
M

X

Start of trace: M X M X M X M X M Z M X M …

Current processing point

M X M
(a) TRG and Q

Q:up to current
processing point

7
M

X

(b) TRG and Q
after

processing M

(c) TRG and Q
after

processing Z
7

M

X

X M ZQ:

Next trace element to process

X Z M XQ:

Z

(d) TRG and Q
after

processing M 7
M

X

1

Z sizeof p〈 〉() chunksize⁄

6

Three items are note-worthy concerning the
merge_nodes routine in Figure 4. First, when we merge
two nodes, we leave the relative alignment of all the pro-
cedures within each node unchanged. We do not backtrack
and undo any previous decisions. Though the ability to
rearrange the entire set of procedures in the two nodes
being merged might lead to a better layout, this flexibility
would noticeably increase the computational complexity
of the algorithm. We assume that the selection order for
procedure placement has guaranteed that we have already
avoided the most expensive, potential cache conflicts. As
our experimental results show, this greedy heuristic works
quite well in practice.

Second, merge_nodes calculates a cost metric for each
potential alignment of the layout in the first node with
respect to the layout in the second node. If we fix the lay-
out of the first node to begin at cache line 0, we can offset
the start of the second node’s layout by any number
between 0 and the number of lines in the cache. We evalu-
ate each of these relative offsets using the fine-grained
temporal information in TRGplace. Each cost estimate is
calculated only for procedure-piece conflicts between

nodes and not for the intra-node conflicts which do not
change. With the fine-grained information in TRGplace,
we are able to find a low-cost, cache-relative placement
for procedures even if they are larger in size than the
cache. Without this information on relationships between
procedure chunks, all cache-relative placements for these
procedures would look equally good.

Third, if the cost-metric calculation produces several
relative offsets with the same cost, our algorithm selects
the first of these offsets. In the simplest case, if we merge
two nodes each containing a single procedure (call them p
and q) and the total size of these two procedures is less
than the cache size, the merging of these nodes will result
in a node that is equivalent to the chain created by PH. In
other words, merge_nodes selects the first empty cache
line after procedure p to begin procedure q since that is the
first zero-cost location for q.

4.3 Producing the final linear list
The merging phase of our algorithm ends when there

are no more edges left in TRGselect.2 The final step in our
algorithm produces a linear arrangement of all of the pro-
gram procedures given the relative alignment decisions
contained in remaining TRGselect nodes. We describe a
simple algorithm that is concerned only with the reduction
of cache misses. We are aware that the spatial and tempo-
ral locality of code pages is also an important performance
factor, and it is possible to alter the algorithm described
below to select a linear ordering of procedures that
reduces paging problems.

To begin, we select a procedure p with a cache-line off-
set of 0 (any starting offset will do). This is the first proce-
dure in our linear layout. To find the next procedure in the
linear layout, we search the nodes for a procedure q whose
cache-relative offset results in the smallest positive gap in
cache lines between the end of p and the start of q.

To understand the general case, assume that the cache
contains N cache lines and that procedure p is the last pro-
cedure in the linear layout. If p ends at the cache-relative
offset pEL, we choose a procedure q which starts at cache-
relative offset qSL as the next procedure in the linear lay-
out. We choose q such that it produces the smallest posi-
tive gap value among all unconsidered popular
procedures. The formula for gap is:

2. Unlike PH, our “working” graph, TRGselect, is not necessarily
reduced to a single node. TRGselect contains only popular procedures,
and it is possible to have the only connection between two popular
procedures be through an unpopular procedure.

Figure 4. Pseudo-code for the merging of two nodes
from the temporal relationship graph TRGselect. Proce-
dure chunks within a node are identified by unique id’s.
An offset for a chunk id records the cache-line index
corresponding to the beginning of that chunk. Offsets
are always in units of cache lines.

typedef NODE = {(id, offset), ...};
typedef CACHE = array [#_cache_lines] of {id, ...};

NODE merge_nodes (NODE n1, NODE n2) {
CACHE c1, c2;

// Initialize cache c1 with chunks from node n1.
foreach (id, offset) pair p in n1 {
for (i = p.offset; i < p.offset+sizeof(p.id); i++)

int lineIndex = i mod #_cache_lines;
c1[lineIndex] := c1[lineIndex] ∪ {p.id};

}

// Initialize c2 using n2 -- code not shown.

// Find the best relative offset of n2 with respect
// to n1 that yields the lowest metric.
int best_offset := 0, best_metric := INFINITY;
foreach i in (0..#_cache_lines)
foreach j in (0..#_cache_lines) {

int metric := 0;
foreach id p1 in c1[(j+i) mod #_cache_lines]

foreach id p2 in c2[j]
metric += weight_on_edge(p1,p2);

if (metric < best_metric)
best_metric := metric; best_offset := i;

}

// Update id’s in n2 with the best relative offset.
foreach (id,offset) pair p in n2
p.offset += best_offset;

return (n1 ∪ n2);
}

gap
qSL pEL– if qSL pEL>()

qSL pEL N–()– otherwise

=

7

Whenever we produce a gap between two popular pro-
cedures, we search the unpopular procedures for one or
more that fill the gap. Once we determine an address for
each popular procedure in the linear address space, we
simply append any remaining un-placed, unpopular proce-
dures to the end of our linear list.

4.4 Practicality
In our on-going work, instead of processing traces we

generate the TRGs during program execution using instru-
mentation techniques. Our instrumented executables run
approximately 25-times slower than the corresponding
non-instrumented executable.

The running time of the placement algorithm is domi-
nated by the time spent in the routine merge_nodes. Let P
be the number of popular procedures and C the number of
cache lines. The routine merge_nodes is called at most P
times. For each call, the two outer loops iterate C times
and the two inner loops iterate less than P times. A crude
upper bound on the running time is thus P3C2. This may
seem excessive, but in practice neither P nor C grow very
large—typical values are in the range 30–150 for P and
256–1024 for C. For our benchmarks and evaluation envi-
ronment in Section 5, the running time of the algorithm
varied between tens of seconds and a few minutes.

5 Experimental evaluation
In this section, we compare three different procedure-

placement algorithms. In addition to PH and our algo-
rithm (GBSC), we present results for a recently published
procedure-placement algorithm, an algorithm by Hashemi
et al. [5] which we refer to as HKC. Like our algorithm,
HKC also extends PH to use knowledge of the procedure
sizes, the cache size, and the cache organization. HKC
uses a weighted call graph but not any additional temporal
information. The key advantage of HKC over PH is that
HKC records the set of cache lines occupied by each pro-
cedure during placement, and it tries to prevent overlap
between a procedure and any of its immediate neighbors
in the call graph. In addition, already mapped procedures
are allowed to move in the mapping as long as the new
location’s cache lines do not conflict with prior decisions.

5.1 Evaluating code placement algorithms
We normally expect code optimizations to behave sim-

ilar to a continuous function: small changes in the behav-
ior of the optimization cause small changes in the
performance of the resulting executable. With code place-
ment optimizations, this is often not the case: small
changes in the layout of a program can cause dramatic
changes in the cache miss rate. As an example, we simu-

lated the instruction cache behavior of the SPECint95 perl
program for two slightly different layouts. The first layout
is the output of our own code layout algorithm, and the
second layout is identical to the first except that each pro-
cedure is padded by an additional 32 bytes (one cache
line) of empty space at its end. The instruction cache miss
rate changed from 3.8% for the first layout to 5.4% for the
second layout; this is a remarkable change for such a triv-
ial difference between the layouts. In fact, it is possible to
introduce a large number of misses by moving one code
block by only a single cache line.

For greedy code-layout algorithms, we have the addi-
tional problem that different layouts, in fact substantially
different layouts, often result from small changes in the
input profile data. At each step, PH, HKC, and GBSC
greedily choose the highest-weight edge in the working
graph. If there are two edges, say with weight 1,000,000
and 1,000,001, the (barely) larger edge will always be
chosen first, even though such a small difference is
unlikely to represent a statistically significant basis for
preferring one edge over the other. Worse, ties resulting
from identical edge weights are decided arbitrarily. Deci-
sions between two equally good alternatives, which must
be made one way or the other, affect not only the current
step of the algorithm, but all future steps.

As a result, we find it difficult to draw conclusions
about the relative performance of different code layout
algorithms from a small number of program traces. Ide-
ally, we would like to have a large enough set of different
inputs for each benchmark to get an accurate impression
of the distribution of results. Unfortunately, this is very
hard to do in practice since common benchmark suites are
not distributed with more than a handful of input sets for
each benchmark application.

We simulate the effect of many slightly different appli-
cation input sets by first running an application with a sin-
gle input, and then applying random perturbations to the
resulting profile data. For the algorithms in our compari-
son, we perturb a weighted graph by multiplying each
edge weight by a value close to one. Specifically, the ini-
tial weight w is replaced by the perturbed weight
according to the equation , where
X is a random variable, normally distributed with mean 0
and variance 1, and s is a scaling factor which determines
the magnitude of the random perturbations. Using multi-
plicative rather than additive noise is attractive for two
reasons. First, additive noise can cause weights to become
negative, for which there is no obvious interpretation. Sec-
ond, the method is inherently self-scaling in the sense that
reasonable values for s are independent of the initial edge
weights.

A large enough value for s will cause the layout to be
effectively random, as the perturbed graphs will bear little

w)

w w sX()exp⋅=)

8

relationship to the profile data. Low values of s will cause
only statistically insignificant differences in edge weights,
and we can then observe the range of results produced by
these small changes. We use in our experi-
ments. Blackwell [2] shows that for several code place-
ment algorithms, values of s as low as 0.01 elicit most of
the range of performance variation from the system, and
that values of s as high as 2.0 do not degrade the average
performance very much.

5.2 Methodology
We have implemented the PH, HKC, and GBSC proce-

dure-placement algorithms such that they can be inte-
grated into two different environments: a simulation
environment based on ATOM [10]; and a compiler envi-
ronment based on SUIF [9]. The results in Section 5.3 are
based on the ATOM environment, but we have used the
SUIF environment to verify that our algorithms produce
runnable, correct code.

Table 1 lists the benchmarks used in our study. Except
for ghostscript, they are all from the SPECint95 bench-
mark suite. We use only five of the eight SPECint95
benchmarks because the other three (compress, ijpeg, and
xlisp) are uninteresting in that all have small instruction
working sets that do equally well under any reasonable
procedure-placement algorithm. We compiled go and perl
using the SUIF compiler (version 1.1.2), while all other
benchmarks were compiled using gcc 2.7.2 with the -O2
optimization flag. We chose the input data sets to keep the
traces to a manageable size. All of the reported miss rates
in this and the next section are based on the simulation of
an 8 kilobyte direct-mapped cache with a line size of 32
bytes. We use the training input to drive the procedure-
placement algorithms, and then simulate the instruction-
cache performance of the resulting optimized executable

using the testing input. We also experimented with smaller
cache sizes and obtained similar results.

5.3 Results
The graphs in Figure 3 show our experimental results

for PH, HKC, and GBSC. Each graph shows the results
for a single benchmark. For each of the three algorithms,
there is a set of sorted points showing the results over a set
of 40 experiments, all based on our single pair of training
and testing data sets. As described in Section 5.1, we use
randomization to obtain 40 slightly different WCGs or
TRGs that may result in slightly different placements. For
each point, the X-coordinate reports the cache miss rate
for that experiment while the Y-coordinate gives the frac-
tion of all placements that had an equal or smaller miss
rate. Consequently, if the points for one algorithm are to
the left of the points for another algorithm, then the first
algorithm gives better results. We notice that our algo-
rithm gives clearly better results than the other two for all
benchmarks except for m88ksim and perl. For these two
benchmarks, the ranges of results overlap. Each graph also
contains a table reporting the miss rate obtained by each
technique without any randomization. Except for
m88ksim, GBSC yields the lowest miss rate. In m88ksim,
dcrand is a poor training set for dhry, and thus few conclu-
sions can be drawn from the non-randomized results. The
miss rates for train/test same (dcrand) are: 0.13% for
GBSC, 0.19% for HKC, 0.23% for PH.

In Section 3, we said that a useful conflict metric
should be strongly correlated with the number of cache
misses. Figure 6 examines this issue by showing the rela-
tionship between conflict-metric values and cache miss
rates. Each plot in Figure 6 contains 80 points, where each
point corresponds to a different placement of the go
benchmark. These placements are based on the GBSC
algorithm; however we varied the output of this algorithm

Program
Name

All
procedures

Popular
procedures Training trace Testing trace Miss rate of

default layout
Average Q

size
size count size count input length input length

gcc 2277 K 2005 351 K 136 recog.i 33 M global.i 45 M 4.86% 11.8

go 590 K 3221 134 K 112 11x11 board, level
4, no stones 20 M 9x9 board, level 6,

4 stones 17 M 3.34% 16.0

ghostscript 1817 K 372 104 K 216 14-page
presentation 37 M 3-page paper 38 M 2.63% 18.7

m88ksim 549 K 460 21 K 31 dcrand, limited to
50M basic blocks 50 M dhry, limited to

50M basic blocks 50 M 2.92% 8.5

perl 664 K 271 83 K 36 scrabbl.pl,
reduced dictionary 77 M primes.pl,

reduced input file 146 M 4.19% 7.1

vortex 1073 K 923 117 K 156 persons.250,
reduced iterations 42 M persons.1k,

reduced iterations 82 M 6.29% 26.4

Table 1: Details of our benchmark applications. We report sizes in bytes and trace lengths in basic blocks. A benchmark’s
“average Q size” reports the average number of procedures that were present in Q during the building of the TRG.

s 0.1=

9

Figure 5. Instruction cache miss rates for our benchmarks. Each graph plots the miss rates corresponding to
the layouts produced by PH, HKC, and our new procedure-placement algorithm (GBSC). Each data point in
the graphs represents the result for a single placement based on the random perturbation of the profile data.
Cache miss rates vary along the x-axis, and the y-axis gives the fraction of all placements that had an equal
or smaller miss rate. We also report the miss rate (MR) for each algorithm using non-perturbed profile data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"gc.gbsc"
"gc.hkc"
"gc.ph"

(a) gcc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"gs.gbsc"
"gs.hkc"
"gs.ph"

(b) ghostscript

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"go.gbsc"
"go.hkc"
"go.ph"

(c) go (d) m88ksim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"m8.gbsc"
"m8.hkc"
"m8.ph"

(e) perl

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"pl.gbsc"
"pl.hkc"
"pl.ph"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

"vo.gbsc"
"vo.hkc"
"vo.ph"

(f) vortex

Non-randomized MR:
gbsc
hkc
ph

4.53%
4.93%
4.82%

Non-randomized MR:
gbsc
hkc
ph

1.90%
2.44%
2.33%

Non-randomized MR:
gbsc
hkc
ph

2.88%
1.47%
3.22%

Non-randomized MR:
gbsc
hkc
ph

2.78%
3.49%
3.11%

Non-randomized MR:
gbsc
hkc
ph

3.90%
4.61%
4.89%

Non-randomized MR:
gbsc
hkc
ph

2.50%
3.62%
3.61%

10

to produce a placement with a range of different miss
rates. We accomplished this by randomly selecting 0–50
procedures in the GBSC placement and randomly chang-
ing their cache-relative offsets. The metric value plotted
corresponds to the resulting placement. The top of
Figure 6 shows that our conflict metric, based on the fine-
grained information in TRGplace, shows a linear relation-
ship with the actual number of cache misses; all the points
in the graph are close to the diagonal. On the other hand,
the bottom of Figure 6 shows that a metric based only on a
WCG is not always a good predictor of cache misses.

6 Extensions for set-associative caches
We have described a code-placement technique that

targets direct-mapped caches. In particular, we assumed
that a single occurrence of a procedure q between two
occurrences of a procedure p is sufficient to displace p.
This assumption is not necessarily true for set-associative
caches, especially for those that implement a LRU policy.
To extend our approach for set-associative caches, we
construct a new data structure that replaces TRGplace, and
we modify the cost-metric calculation in merge_nodes.
This section focuses on 2-way set-associative caches; the
implementation for other associativities follows directly.

Instead of a graph representation for TRGplace, it is
now more convenient to view the temporal-relationship
structure as a database D that records the number of times
that a code-block pair {r,s} appears between consecutive
occurrences of another code block p in a program trace.
We can still use our ordered set approach to build this
database. However, when we process the temporal associ-
ations related to the next code block p in the trace, we
associate p with all possible selections of two identifiers
from the identifiers currently in Q (up to any previous
occurrence of p as before). We do this because two unique
references are required to guarantee no reuse. Thus, the
database simply records the frequency of each association
between p and the pair {r,s}, accessed as D(p,{r,s}). If r,
s, and p all occupy the same set in a two-way set-associa-
tive cache, then we estimate that D(p,{r,s}) of the program
references to p will result in cache conflicts due to the dis-
placement of p by intervening references to both r and s.
We use this information in merge_nodes to check the cost
of the association between a code block in node n1 against
all pairs of code blocks in n2 and vice-versa. While imple-
menting this extension, we found it also necessary to mod-
ify some of the other heuristics that were relatively
unimportant for direct-mapped caches but were found to
be important for procedure placement in set-associative
caches.

7 Related work
Much of the prior work in the area of compile-time

code placement is related to early work in reducing the
frequency of page faults in the virtual memory system and
more recent work at reducing the cost of pipeline penalties
associated with control transfer instructions. However, we
limit our discussion here to studies that directly address
the issue of code placement aimed at reducing instruction
cache conflict misses. Some of the earliest work in this
area was done by Hwu and Chang [6], McFarling [7], and
Pettis and Hansen [8]. Hwu and Chang use a WCG and a
proximity heuristic to address the problem of basic-block
placement. Their approach is unique in that they also per-
form function inline expansion during code placement to
overcome the artificial barriers imposed by procedure call
boundaries.

2

4

6

8

10

12

1.8 2 2.2 2.4 2.6 2.8 3 3.2

"go.corel_trg"

Figure 6. Correlation between conflict metric and cache
misses. Data points are 80 randomized layouts for the go
benchmark. The X-coordinate of a point is the cache
miss rate for that layout; the Y-coordinate is the sum of
the conflict metrics for the indicated method over the
entire placement.

cache miss rate

co
nfl

ic
t e

st
im

at
e

(m
ill

io
ns

)

Using a

2

4

6

8

10

12

1.8 2 2.2 2.4 2.6 2.8 3 3.2

"go.corel_wcg"

cache miss rate

co
nfl

ic
t e

st
im

at
e

(m
ill

io
ns

)

fine-grained TRG

Using a
WCG

11

McFarling [7] uses an interesting program representa-
tion (a DAG of procedures, loops, and conditionals) to
drive his code-placement algorithm, but the profile infor-
mation is still summarized in such a way that the temporal
interleaving of blocks in the trace is lost. In fact, this paper
explicitly states that, because he is unable to collect tem-
poral interleaving information, his algorithm assumes and
optimizes for a worst-case interleaving of blocks. Finally,
his algorithm is unique in its ability to determine which
portions of the text segment should be excluded from the
instruction cache.

Torrellas, Xia, and Daigle [11] propose a code-place-
ment technique for kernel-intensive applications. Their
algorithm considers the cache address mapping when per-
forming code placement. They define an array of logical
caches, equal in size and address alignment to the hard-
ware cache. Code placed within a single logical cache is
guaranteed never to conflict with any other code in that
logical cache. Though there is a sub-area of all logical
caches that is reserved for the most frequently-executed
basic blocks, there is no general mechanism for calculat-
ing the placement costs across different logical caches.
Their code placement is guided by execution counts of
edges between basic blocks, and therefore does not cap-
ture temporal ordering information.

The history mechanism we use to analyze the temporal
behavior of a trace is similar to the problem of profiling
paths in a procedure call graph. Ammons et al. [1]
describe a way of implementing efficient path profiling.
However, the data structure generated by this technique
cannot be used in the place of our TRG, because it does
not capture sufficient temporal ordering information.

8 Conclusion
We have presented a practical method for extracting

temporal ordering information from a trace. We then
described a procedure-placement algorithm that uses this
information along with the knowledge of the cache lines
each procedure occupies to predict accurately which
placements will result in the least number of conflict
misses. The results show that these two factors combined
allow us to obtain better instruction cache miss rates than
previous procedure-placement techniques. Other code-
placement techniques, such as “procedure splitting” [8]
and branch alignment [12], are orthogonal to the problem
of placing whole procedures and can therefore be com-
bined with our technique to achieve further improvements.
The success of our experiments indicates that it is worth-
while to continue research on the temporal behavior of
applications. In particular, we plan to develop similar
techniques to optimize the behavior of applications in
other layers of the memory hierarchy.

9 Acknowledgments
We would like to thank the anonymous reviewers for

providing helpful comments. Trevor Blackwell is funded
in part by BNR’s External Research program. Brad Calder
is funded in part by a UC MICRO grant no. 97-018 and a
Digital Equipment external research grant no. US-0040-
97. Michael D. Smith is funded in part by a NSF Young
Investigator award (grant no. CCR-9457779), a DARPA
grant no. NDA904-97-C-0225, and research gifts from
AMD, Digital Equipment, HP, and Intel.

10 References
[1] G. Ammons, T. Ball, and J. Larus. “Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profil-
ing,” Proc ACM SIGPLAN’97 Conf. on Programming Language
Design and Implementation, pp. 85-96, June 1997.
[2] T. Blackwell. “Applications of Randomness in System Per-
formance Measurement.” Ph.D. Thesis, Department of Com-
puter Science, Harvard University, 1997.
[3] W. Chen, P. Chang, T. Conte, and W. Hwu. “The Effect of
Code Expanding Optimizations on Instruction Cache Design,”
Technical Report CRHC-91-17, Coordinated Science Lab, Uni-
versity of Illinois, Urbana, IL, April 1991.
[4] N. Gloy, M. Smith, and C. Young. “Performance Issues in
Correlated Branch Prediction Schemes,” Proc. 28th Annual
IEEE/ACM Intl. Symp. on Microarchitecture, pp. 3-14, Novem-
ber 1995.
[5] A. Hashemi, D. Kaeli, and B. Calder. “Efficient Procedure
Mapping Using Cache Line Coloring,” Proc ACM SIGPLAN’97
Conf. on Programming Language Design and Implementation,
pp. 171-182, June 1997.
[6] W. Hwu and P. Chang. “Achieving High Instruction Cache
Performance with an Optimizing Compiler,” Proc. 16th Annual
Intl. Symp. on Computer Architecture, pp. 242–251, May 1989.
[7] S. McFarling. “Program Optimization for Instruction
Caches,” Proc. Third Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 183–191,
April 1989.
[8] K. Pettis and R. Hansen. “Profile Guided Code Position-
ing,” Proc. ACM SIGPLAN’90 Conf. on Programming Language
Design and Implementation, pp. 16–27, June 1990.
[9] M. Smith. “Extending SUIF for Machine-dependent Opti-
mizations,” Proc. First SUIF Compiler Workshop, Stanford, CA,
pp. 14–25, January 1996.
[10] A. Srivastava and A. Eustace, “ATOM: A System for Build-
ing Customized Program Analysis Tools,” Proc. SIGPLAN ‘94
Conf. on Programming Language Design and Implementation,
pp. 196–205, June 1994.
[11] J. Torrellas, C. Xia, and R. Daigle. “Optimizing Instruction
Cache Performance for Operating System Intensive Workloads,”
Proc. First Intl. Symp. on High-Performance Computer Architec-
ture, pp. 360–369, January 1995.
[12] C. Young, D. Johnson, D. Karger, and M. Smith. “Near-
Optimal Intraprocedural Branch Alignment,” Proc ACM SIG-
PLAN’97 Conf. on Programming Language Design and Imple-
mentation, pp. 183-193, June 1997.

